Friday 19 July 2013

                                 NIGHT VISION MONEY



You can be a dork at times and hand out the wrong currency notes, especially in a dim lit cab. Don’t expect anyone to rectify your mistakes…your loss is another man’s gain! Tough luck and be careful till the agencies get the heads up on inventions like the Luminous Paper Money. Notes that emit a soft glow, just enough to ensure you hand out the correct note; nothing more nothing less



In biological night vision, molecules of rhodopsin in the rods of the eye undergo a change in shape as they absorb light. Rhodopsin is the chemical that allows night-vision, and is extremely sensitive to light. Exposed to a spectrum of light, the pigment immediately bleaches, and it takes about 30 minutes to regenerate fully, but most of the adaptation occurs within the first five or ten minutes in the dark. Rhodopsin in the human rods is less sensitive to the longer red wavelengths of light, so traditionally many people use red light to help preserve night vision as it only slowly depletes the eye's rhodopsin stores in the rods and instead is viewed by the cones. However the US submarine force ceased using red lighting for night adaptation after studies found little significant advantage of using low level red over low level white lighting.[3] [4] Many animals have a tissue layer called the tapetum lucidum in the back of the eye that reflects light back through the retina, increasing the amount of light available for it to capture. This is found in many nocturnal animals and some deep sea animals, and is the cause of eyeshine. Humans lack a tapetum lucidum.
Nocturnal mammals have rods with unique properties that make enhanced night vision possible. The nuclear pattern of their rods changes shortly after birth to become inverted. In contrast to contemporary rods, inverted rods have heterochromatin in the center of their nuclei and euchromatin and other transcription factors along the border. In addition, the outer nuclear layer (ONL) in nocturnal mammals is thick due to the millions of rods present to process the lower light intensities of a few photons. Rather than being scattered, the light is passed to each nucleus individually.[5] In fact, an animal's ability to see in low light levels may be similar to what humans see when using first- or perhaps second-generation image intensifie

No comments:

Post a Comment